Cho đồ thị (Cm): y=x^3-2x^2+(1-m)x+m. Khi m=m0 thì (Cm) cắt trục hoành tại ba điểm phân biệt có hoành độ

Câu hỏi :

Cho đồ thị \(\left( {{C_m}} \right):y = {x^3} - 2{x^2} + \left( {1 - m} \right)x + m.\) Khi m=m0 thì \(\left( {{C_m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 4.\) Khẳng định nào sau đây đúng?

A.\({m_0} \in \left( { - 2;0} \right).\)

B.\({m_0} \in \left( {0;2} \right).\)

C.\({m_0} \in \left( {1;2} \right).\)

D. \({m_0} \in \left( {2;5} \right).\)

* Đáp án

B

* Hướng dẫn giải

Phương trình hoành độ giao điểm:

\({x^3} - 2{x^2} + \left( {1 - m} \right)x + m = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - x - m = 0{\rm{ }}\left( 1 \right)\end{array} \right.\)

Giả sử \({x_3} = 1\) thì yêu cầu bài toán tương đương với tìm \(m\) để \(\left( 1 \right)\) có hai nghiệm \({x_1},{x_2}\) phân biệt khác 1 và thỏa mãn: \(x_1^2 + x_2^2 = 3.\)

Điều này tương đương với

\(\left\{ \begin{array}{l}\Delta >0\\1 - 1 - m \ne 0\\{\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + 4m >0\\m \ne 0\\{1^2} + 2m = 3\end{array} \right. \Leftrightarrow m = 1\)

Vậy giá trị cần tìm của \(m\) là \(m = 1.\)

Đáp án B

Copyright © 2021 HOCTAP247