Tìm m để phương trình x^6 + 6x^4 - (m^2)x^3 + (15 - 3m^2)x^2 - 6mx + 10 = 0 có đúng hai nghiệm phân biệt thuộc

Câu hỏi :

Tìm \(m\) để phương trình \({x^6} + 6{x^4} - {m^2}{x^3} + \left( {15 - 3{m^2}} \right){x^2} - 6mx + 10 = 0\) có đúng hai nghiệm phân biệt thuộc \[\left[ {\frac{1}{2};2} \right]?\]

A.\(2 < m \le \frac{5}{2}.\)

B.\(\frac{{11}}{5} < m < 4.\)

C.\(\frac{7}{5} \le m < 3.\)

D. \(0 < m < \frac{9}{4}.\)

* Đáp án

A

* Hướng dẫn giải

Phương trình đã cho tương đương với

\(\left( {{x^6} + 6{x^4} + 12{x^2} + 8} \right) - \left( {{m^3}{x^3} + 2{m^2}{x^2} + 3mx + 1} \right) + \left( {3{x^2} - 3mx + 3} \right) = 0\)

\( \Leftrightarrow {\left( {{x^2} + 2} \right)^3} - {\left( {mx + 1} \right)^3} + 3\left( {{x^2} - mx + 1} \right) = 0\)

\( \Leftrightarrow \left( {{x^2} - mx + 1} \right)\left[ {{{\left( {{x^2} + 2} \right)}^2} + \left( {{x^2} + 2} \right)\left( {mx + 1} \right) + {{\left( {mx + 1} \right)}^2} + 3} \right] = 0\)

\( \Leftrightarrow {x^2} - mx + 1 = 0\) (Vì \({a^2} + ab + {b^2} = {\left( {a + \frac{1}{2}b} \right)^2} + \frac{3}{4}{b^2} \ge 0,\forall a,b).\)

\( \Leftrightarrow x + \frac{1}{x} = m\) (Do \(x = 0\) không thỏa mãn phương trình này).

Xét hàm số \(f\left( x \right) = x + \frac{1}{x}\) trên đoạn \(\left[ {\frac{1}{2};2} \right].\) Ta có:

\(f'\left( x \right) = 1 - \frac{1}{{{x^2}}}\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \notin \left( {\frac{1}{2};2} \right)\\x = 1 \in \left( {\frac{1}{2};2} \right)\end{array} \right.\)

Ta có bảng biến thiên

Tìm \(m\) để phương trình \({x^6} + 6{x^4} - {m^2}{x^3} + \left( {15 - 3{m^2}} \right){x^2} - 6mx + 10 = 0\) có đúng hai nghiệm phân biệt thuộc \[\left[ {\frac{1}{2};2} \right]?\] (ảnh 1)

Từ bảng biến thiên trên suy ra để phương trình đã cho có đúng 2 nghiệm thỏa mãn \(\left[ {\frac{1}{2};2} \right]\) thì \(2 < m \le \frac{5}{2}.\)

Vậy tất cả các giá trị cần tìm của \(m\) là \(2 < m \le \frac{5}{2}.\)
Đáp án A

Copyright © 2021 HOCTAP247