Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ bên. Hàm số g(x)=f(x+1) + (x^3)/3 - 3x nghịch biến

Câu hỏi :

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.

A.\(\left( { - 2;0} \right).\)

B.\(\left( { - 1;2} \right).\)

C.\(\left( {0;4} \right).\)

D. \(\left( {1;5} \right).\)

* Đáp án

B

* Hướng dẫn giải

Ta có \(g'\left( x \right) = f'\left( {x + 1} \right) + {x^2} - 3\)

Cho \(g'\left( x \right) = 0 \Leftrightarrow f'\left( {x + 1} \right) = 3 - {x^2}\)

Đặt \(t = x + 1\)

Suy ra \(f'\left( t \right) = - {t^2} + 2t + 2\)

Gọi \(h\left( t \right) = - {t^2} + 2t + 2 \Rightarrow g'\left( t \right) = f'\left( t \right) - h\left( t \right)\)

Đồ thị \(y = h\left( t \right)\) có đỉnh \(I\left( {1;3} \right);t = 3 \Rightarrow h\left( 3 \right) = - 1;t = 0 \Rightarrow h\left( 0 \right) = 2\)

Sau khi vẽ \(h\left( t \right) = - {t^2} + 2t + 2\) ta được hình vẽ bên

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 2)

Hàm số nghịch biến khi \(g'\left( t \right) \le 0 \Leftrightarrow f'\left( t \right) - h\left( t \right) \le 0 \Leftrightarrow 0 \le t \le 3\)

Suy ra \(0 \le x + 1 \le 3 \Leftrightarrow - 1 \le x \le 2\)

Vậy hàm số \(y = g\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;2} \right).\)

Đáp án B

Copyright © 2021 HOCTAP247