A.\(m = 2 \pm \sqrt {10} .\)
B.\(m = 4 \pm \sqrt 3 .\)
C.\(m = 2 \pm \sqrt 3 \)
D. \(m = 4 \pm \sqrt {10} .\)
D
Ta có PTHĐGĐ của đường thẳng \(\left( d \right)\) và đồ thị hàm số \(y = \frac{{2x + 1}}{{x + 1}}\)
\(\frac{{2x + 1}}{{x + 1}} = x + m - 1,\left( {x \ne - 1} \right)\)
\( \Leftrightarrow 2x + 1 = \left( {x + m - 1} \right)\left( {x + 1} \right)\)
\( \Leftrightarrow {x^2} + \left( {m - 2} \right)x + m - 2 = 0\left( 2 \right)\)
Phương trình \(\frac{{2x + 1}}{{x + 1}} = x + m - 1\) có hai nghiệm phân biệt khi và chỉ khi phương trình \(\left( 2 \right)\) có hai nghiệm phân biệt \({x_1},{x_2} \ne - 1.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta >0\\1 - m + 2 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 2} \right)^2} - 4\left( {m - 2} \right) >0\\1 \ne 0\end{array} \right. \Leftrightarrow {m^2} - 8m + 12 >0 \Leftrightarrow \left[ \begin{array}{l}m < 2\\m >6\end{array} \right.\)</>
Gọi \(M\left( {{x_1};{x_1} + m - 1} \right),N\left( {{x_2};{x_2} + m - 1} \right)\) là giao điểm của hai đồ thị.
Ta có \(MN = 2\sqrt 3 \Leftrightarrow M{N^2} = 12 \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} + {\left( {{x_2} - {x_1}} \right)^2} = 12\)
\( \Leftrightarrow x_2^2 - x_1^2 - 2{x_1}{x_2} = 6 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} - 6 = 0\)
\( \Leftrightarrow {\left( {m - 2} \right)^2} - 4\left( {m - 2} \right) - 6 = 0 \Leftrightarrow {m^2} - 8m + 6 = 0\)
\( \Leftrightarrow {\left( {m - 2} \right)^2} - 4\left( {m - 2} \right) - 6 = 0 \Leftrightarrow {m^2} - 8m + 6 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}m = 4 + \sqrt {10} \\m = 4 - \sqrt {10} \end{array} \right.\)
So với điều kiện có hai nghiệm phân biệt, ta nhận cả hai giá trị \(m = 4 \pm \sqrt {10} .\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247