Cho các số dương (a,b,c ) khác 1 thỏa mãn ({ log _a} left( {bc} right) = 3,{ log _b} left( {ca} right) = 4. ) Tính giá trị của ({ log _c} left( {ab} right). )

Câu hỏi :

Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)

A.\(\frac{{16}}{9}.\)

B.\(\frac{{16}}{4}.\)

C.\(\frac{{11}}{9}.\)

D. \(\frac{9}{{11}}.\)

* Đáp án

D

* Hướng dẫn giải

Ta có:

\({\log _a}\left( {bc} \right) = \frac{{{{\log }_c}\left( {bc} \right)}}{{{{\log }_c}a}} = \frac{{{{\log }_c}b + 1}}{{{{\log }_c}a}} = 3 \Rightarrow 3{\log _c}a - {\log _c}b = 1.\left( 1 \right)\)

\({\log _b}\left( {ca} \right) = \frac{{{{\log }_c}\left( {ca} \right)}}{{{{\log }_c}b}} = \frac{{{{\log }_c}a + 1}}{{{{\log }_c}b}} = 4 \Rightarrow {\log _c}a - 4{\log _c}b = - 1.\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ \begin{array}{l}3{\log _c}a - {\log _c}b = 1\\{\log _c}a - 4{\log _c}b = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _c}a = \frac{5}{{11}}\\{\log _c}b = \frac{4}{{11}}\end{array} \right. \Rightarrow {\log _c}\left( {ab} \right) = {\log _c}a + {\log _c}b = \frac{9}{{11}}.\)

Đáp án D

Copyright © 2021 HOCTAP247