A.9.
B.5.
C.7.
D. 3.
C
Đường thẳng \(d\) đi qua điểm \(A\left( {1;m} \right)\) hệ số góc \(k\) có phương trình là \(y = k\left( {x - 1} \right) + m.\)
Đường thẳng \(d\) là tiếp tuyến của đồ thị \(\left( C \right)\) khi và chỉ khi hệ phương trình
\(\left\{ \begin{array}{l}{x^3} + 3{x^2} + 1 = k\left( {x - 1} \right) + m{\rm{ }}\left( 1 \right)\\3{x^2} + 6x = k{\rm{ }}\left( 2 \right)\end{array} \right.\) có nghiệm \(x.\)
Thay (2) vào (1) ta có phương trình \({x^3} + 3{x^2} + 1 = \left( {3{x^2} + 6x} \right)\left( {x - 1} \right) + m \Leftrightarrow 2{x^3} - 6x - 1 = - m\left( 3 \right).\)
Qua điểm \(A\left( {1;m} \right)\) kẻ được đúng 3 tiếp tuyến với đồ thị \(\left( C \right) \Leftrightarrow \) phương trình \(\left( 3 \right)\) có ba nghiệm phân biệt \( \Leftrightarrow \) hai đồ thị hàm số \(y = f\left( x \right) = 2{x^3} - 6x - 1\) và \(y = - m\) cắt nhau tại ba điểm phân biệt.
Ta có bảng biến thiên của hàm số \(y = 2{x^3} - 6x - 1\) như sau:
Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) suy ra
Vậy có tất cả 7 giá trị nguyên của tham số \(m\) thỏa mãn yêu cầu bài toán.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247