Cho hình chóp (S.ABC ) có (SA = SB = SC = 3, ) tam giác (ABC ) vuông cân tại (B ) và [AC = 2 sqrt 2 . ] Gọi (M,N ) lần lượt là trung điểm của (AC ) và (BC. ) Trên hai cạnh (SA,SB )...

Câu hỏi :

Cho hình chóp \(S.ABC\) có \(SA = SB = SC = 3,\) tam giác \(ABC\) vuông cân tại \(B\) và \[AC = 2\sqrt 2 .\] Gọi \(M,N\) lần lượt là trung điểm của \(AC\) và \(BC.\) Trên hai cạnh \(SA,SB\) lấy các điểm \(P,Q\) tương ứng sao cho \(SP = 1,SQ = 2.\) Tính thể tích \(V\) của tứ diện \(MNPQ.\)

A.\(V = \frac{{\sqrt 7 }}{{18}}.\)

B.\(V = \frac{{\sqrt {34} }}{{12}}.\)

C.\(V = \frac{{\sqrt 3 }}{{12}}.\)

D. \(V = \frac{{\sqrt {34} }}{{144}}.\)

* Đáp án

A

* Hướng dẫn giải

Cho hình chóp \(S.ABC\) có \(SA = SB = SC = 3,\) tam giác \(ABC\) vuông cân tại \(B\) và \[AC = 2\sqrt 2 .\] Gọi \(M,N\) lần lượt là trung điểm của \(AC\) và \(BC.\) Trên hai cạnh \(SA,SB\) l (ảnh 1)

Gọi \(I\) là giao điểm của \(PQ\) và \(AB\)

\({V_{MNPQ}} = {V_{I.MPN}} - {V_{I.QMN}} = {V_{P.MNI}} - {V_{Q.MNI}}.\)

Tính diện tích \(\Delta MNI\)

\(MN = 1\)

Gọi \(E\) là trung điểm của \(SQ \Rightarrow PE//AB\) và \(PE = \frac{1}{3}AB\)

Ta có \(\Delta PEQ = \Delta IBQ\left( {g.c.g} \right) \Rightarrow PE = IB\)

\( \Rightarrow IB = \frac{1}{3}AB = \frac{2}{3}.\)

\(I{N^2} = B{N^2} + I{B^2} = 1 + \frac{4}{9} = \frac{{13}}{9} \Rightarrow IN = \frac{{\sqrt {13} }}{3}.\)

Áp dụng định lý cosin cho tam giác \(IAM\) có:

\(IM = I{A^2} + A{M^2} - 2IA.AM.\cos {45^0}\)

\( = {\left( {\frac{8}{3}} \right)^2} + {\left( {\sqrt 2 } \right)^2} - 2.\frac{8}{3}.\sqrt 2 .\frac{{\sqrt 2 }}{2} = \frac{{34}}{9} \Rightarrow IM = \frac{{\sqrt {34} }}{9}.\)

\(\cos \widehat {MNI} = \frac{{M{N^2} + I{N^2} - M{I^2}}}{{2.MN.IN}} = \frac{{1 + \frac{{13}}{9} - \frac{{34}}{9}}}{{2.1.\frac{{\sqrt {13} }}{3}}} = \frac{{ - 2\sqrt {13} }}{{13}}.\)

\(\sin \widehat {MNI} = \sqrt {1 - {{\cos }^2}\widehat {MNI}} = \frac{3}{{\sqrt {13} }}.\)

\({S_{MNI}} = \frac{1}{2}.MN.NI.\sin \widehat {MNI} = \frac{1}{2}.1.\frac{{\sqrt {13} }}{3}.\frac{3}{{\sqrt {13} }} = \frac{1}{2}.\)

\({V_{MNPQ}} = \frac{1}{3}.d\left( {P;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.d\left( {Q;\left( {MIN} \right)} \right).{S_{MIN}}\)

\( = \frac{1}{3}.\frac{2}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.\frac{1}{3}.d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}}\)

\( = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).{S_{MIN}}\)

Vì \(SA = SB = SC\) nên hình chiếu của đỉnh \(S\) trên mặt phẳng \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)

Mà tam giác \(ABC\) vuông tại B nên tam đường tròn ngoại tiếp tam giác \(ABC\) chính là điểm \(M\).

Vậy \({V_{MNPQ}} = \frac{1}{9}.\sqrt 7 .\frac{1}{2} = \frac{{\sqrt 7 }}{{18}}.\)

Đáp án A

Copyright © 2021 HOCTAP247