(TH): Trong không gian với hệ trục tọa độ [Oxyz, ] cho đường thẳng [ Delta :{ mkern 1mu} { mkern 1mu} frac{x}{2} = frac{{y + 1}}{{ - 2}} = frac{{z - 1}}{1} ] và mặt phẳng [ left( Q...

Câu hỏi :

Trong không gian với hệ trục tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{1}\] và mặt phẳng \[\left( Q \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x - y + 2z = 0.\] Viết phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {0; - 1;{\mkern 1mu} {\mkern 1mu} 2} \right),\] song song với đường thẳng \[\Delta \] và vuông góc với mặt phẳng \[\left( Q \right).\]

A.\[x + y - 1 = 0\]

B.\[ - 5x + 3y + 3 = 0\]

C.\[x + y + 1 = 0\]

D.\[ - 5x + 3y - 2 = 0\]

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Xác định \[\overrightarrow {{u_\Delta }} \] là 1 VTCP của \[\Delta \] và \[\overrightarrow {{n_Q}} \] là 1 VTPT của \[\left( Q \right)\].

- Vì \[\left\{ {\begin{array}{*{20}{l}}{\left( P \right)//\Delta }\\{\left( P \right) \bot \left( Q \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {{n_P}} \bot \overrightarrow {{u_\Delta }} }\\{\overrightarrow {{n_P}} \bot \overrightarrow {{n_Q}} }\end{array}} \right.\] \[ \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_Q}} ;\overrightarrow {{u_\Delta }} } \right]\].

- Phương trình mặt phẳng đi qua \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có 1 VTPT → \[\vec n\left( {A;B;C} \right)\] là

\[A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\].

Giải chi tiết:

Đường thẳng \[\Delta \] có 1 VTCP là \[\overrightarrow {{u_\Delta }} = \left( {2; - 2;1} \right)\].

Mặt phẳng \[\left( Q \right)\] có 1 VTPT là \[\overrightarrow {{n_Q}} = \left( {1; - 1;2} \right)\].

Gọi \[\overrightarrow {{n_P}} \] là 1 VTPT của mặt phẳng \[\left( P \right)\]. Vì \[\left\{ {\begin{array}{*{20}{l}}{\left( P \right)//\Delta }\\{\left( P \right) \bot \left( Q \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {{n_P}} \bot \overrightarrow {{u_\Delta }} }\\{\overrightarrow {{n_P}} \bot \overrightarrow {{n_Q}} }\end{array}} \right.\].

\[ \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_Q}} ;\overrightarrow {{u_\Delta }} } \right] = \left( {3;3;0} \right)\] \[ \Rightarrow \vec n\left( {1;1;0} \right)\] cũng là 1 VTPT của \[\left( P \right)\].

Vậy phương trình mặt phẳng \[\left( P \right)\] là \[1.\left( {x - 0} \right) + 1.\left( {y + 1} \right) + 0.\left( {z - 2} \right) = 0\] \[ \Leftrightarrow x + y + 1 = 0\].

Đáp án C

Copyright © 2021 HOCTAP247