A.\[1 < m < \frac{3}{2}\]
B.\[4 < m < 5\]
C.\[3 < m < 4\]
D.\[2 < m < \frac{5}{2}\]
D
Phương pháp giải:
- Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng \[m = f\left( x \right)\] .
- Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng \[y = 2m - 1\] phải cắt đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] tại 3 điểm phân biệt.
- Lập BBT hàm số , từ đó lập BBT hàm số \[y = {x^4} - 2{x^2} - 3\] , \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] và tìm m thỏa mãn.
Giải chi tiết:
Số nghiệm của phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] là số giao điểm của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] và đường thẳng .
Xét hàm số \[y = {x^4} - 2{x^2} - 3\] ta có \[y' = 4{x^3} - 4x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \pm 1}\end{array}} \right.\]
BBT:
Từ đó ta suy ra BBT của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\].
- Từ đồ thị \[y = {x^4} - 2{x^2} - 3\] lấy đối xứng phần đồ thị bên dưới trục \[Ox\] qua trục \[Ox\].
- Xóa đi phần đồ thị bên dưới trục \[Ox\].
Ta có BBT của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] như sau:
Dựa vào BBT ta thấy đường thẳng \[y = 2m - 1\] cắt đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] tại 6 điểm phân biệt khi và chỉ khi \[3 < 2m - 1 < 4 \Leftrightarrow 4 < 2m < 5 \Leftrightarrow 2 < m < \frac{5}{2}\].
Vậy \[2 < m < \frac{5}{2}\].
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247