A. 3
B. 33
C. 32
D. 31
D
Phương pháp giải:
- Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng \[m = f\left( x \right)\] .
- Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng \[y = m\] phải cắt đồ thị hàm số \[y = f\left( x \right)\] tại 3 điểm phân biệt.
- Lập BBT hàm số \[y = f\left( x \right)\] và tìm m thỏa mãn.
Giải chi tiết:
Xét phương trình hoành độ giao điểm \[{x^3} - 12x + 1 - m = 0 \Leftrightarrow m = {x^3} - 12x + 1 = f\left( x \right)\].
Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng \[y = m\] phải cắt đồ thị hàm số \[y = f\left( x \right)\] tại 3 điểm phân biệt.
Ta có \[f'\left( x \right) = 3{x^2} - 12 = 0 \Leftrightarrow x = \pm 2\].
BBT:
Dựa vào BBT ta thấy để đường thẳng \[y = m\] phải cắt đồ thị hàm số \[y = f\left( x \right)\] tại 3 điểm phân biệt thì \[ - 15 < m < 17\].
Mà \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 14; - 13; - 12;...;15;16} \right\}\]. Vậy có 31 giá trị của mthỏa mãn yêu cầu bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247