(VD): Cho hình chóp [S.ABCD ] có đáy [ABCD ] là hình vuông cạnh [a sqrt 2 . ] Cạnh bên [SA ] vuông góc với đáy. Góc giữa [SC ] và mặt phẳng đáy bằng [{45^0}. ] Gọi E là trung điểm...

Câu hỏi :

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]

A.\[\frac{{2a\sqrt {19} }}{{19}}\]

B.\[\frac{{a\sqrt {10} }}{{19}}\]

C.\[\frac{{a\sqrt {10} }}{5}\]

D.\[\frac{{2a\sqrt {19} }}{5}\]

* Đáp án

A

* Hướng dẫn giải

Phương pháp giải:

- Xác định mặt phẳng \[\left( P \right)\] chứa \[DE\] và song song với \[SC\], khi đó \[d\left( {DE;SC} \right) = d\left( {SC;\left( P \right)} \right)\].

- Đổi sang \[d\left( {A;\left( P \right)} \right)\]. Dựng khoảng cách.

- Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

- Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích … để tính khoảng cách.

Giải chi tiết:

 (VD): Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của  (ảnh 1)

Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap DE\], trong \[\left( {SAC} \right)\] kẻ \[IG//SC{\mkern 1mu} {\mkern 1mu} \left( {G \in SA} \right)\], khi đó ta có \[DE \subset \left( {GDE} \right)//SC\].

\[ \Rightarrow d\left( {SC;DE} \right) = d\left( {SC;\left( {GDE} \right)} \right) = d\left( {C;\left( {GDE} \right)} \right)\].

Áp dụng định lí Ta-lét ta có: \[\frac{{IC}}{{IA}} = \frac{{EC}}{{AD}} = \frac{1}{2}\], do \[AC \cap \left( {GDE} \right) = I\] nên \[\frac{{d\left( {C;\left( {GDE} \right)} \right)}}{{d\left( {A;\left( {GDE} \right)} \right)}} = \frac{{IC}}{{IA}} = \frac{1}{2}\] \[ \Rightarrow d\left( {C;\left( {GDE} \right)} \right) = \frac{1}{2}d\left( {A;\left( {GDE} \right)} \right)\].

Trong \[\left( {ABCD} \right)\] kẻ \[AH \bot DE{\mkern 1mu} \left( {H \in DE} \right)\], trong \[\left( {GAH} \right)\] kẻ \[AK \bot GH{\mkern 1mu} {\mkern 1mu} \left( {K \in GH} \right)\] ta có:

\[\left\{ {\begin{array}{*{20}{l}}{DE \bot AH}\\{DE \bot AG}\end{array}} \right. \Rightarrow DE \bot \left( {AGH} \right) \Rightarrow DE \bot AK\]

\[\left\{ {\begin{array}{*{20}{l}}{AK \bot GH}\\{AK \bot DE}\end{array}} \right. \Rightarrow AK \bot \left( {GDE} \right) \Rightarrow d\left( {A;\left( {GDE} \right)} \right) = AK\]

Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\]

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA = {45^0}\].

\[ \Rightarrow \Delta SAC\] vuông cân tại A.

Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 2 \] nên AC=a2.2=2a=SA.

Áp dụng định lí Ta-lét ta có \[\frac{{AG}}{{AS}} = \frac{{AI}}{{AC}} = \frac{2}{3} \Rightarrow AG = \frac{{4a}}{3}\].

Ta có: \[{S_{\Delta AED}} = \frac{1}{2}d\left( {E;AD} \right).AD = \frac{1}{2}AB.AD = \frac{1}{2}a\sqrt 2 .a\sqrt 2 = {a^2}\].

Áp dụng định lí Pytago trong tam giác vuông \[CDE\] ta có \[DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {2{a^2} + \frac{{{a^2}}}{2}} = \frac{{a\sqrt {10} }}{2}\].

\[ \Rightarrow AH = \frac{{2{S_{AED}}}}{{ED}} = \frac{{2{a^2}}}{{\frac{{a\sqrt {10} }}{2}}} = \frac{{2a\sqrt {10} }}{5}\].

Áp dụng hệ thức lượng trong tam giác vuông \[GAH\] ta có

AK=AG.AH√AG2+AH2=4a3.2a√105

\[AK = \frac{{AG.AH}}{{\sqrt {A{G^2} + A{H^2}} }} = \frac{{\frac{{4a}}{3}.\frac{{2a\sqrt {10} }}{5}}}{{\sqrt {{{\left( {\frac{{4a}}{3}} \right)}^2} + {{\left( {\frac{{2a\sqrt {10} }}{5}} \right)}^2}} }} = \frac{{4a\sqrt {19} }}{{19}}\].

Vậy \[d\left( {DE;SC} \right) = \frac{1}{2} = \frac{{2a\sqrt {19} }}{{19}}\].

Đáp án A

Copyright © 2021 HOCTAP247