A. \[2019\]
B. \[2018\]
C. \[2021\]
D. 2017
B
Phương pháp giải:
- Đặt ẩn phụ \[t = {2^{x - 2}} >0\].
- Cô lập m, đưa phương trình về dạng \[m = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].
- Lập BBT của hàm số \[g\left( t \right)\] khi \[t >0\].
- Dựa vào BBT tìm giá trị của m để phương trình có nghiệm.
Giải chi tiết:
Ta có \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0 \Leftrightarrow 4.{\left( {{2^{x - 2}}} \right)^2} - m{.2^{x - 2}} + 1 = 0\].
Đặt \[t = {2^{x - 2}} >0\], phương trình đã cho trở thành \[4{t^2} - mt + 1 = 0 \Leftrightarrow m = \frac{{4{t^2} + 1}}{t} = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].
Xét hàm số \[g\left( t \right) = \frac{{4{t^2} + 1}}{t} = 4t + \frac{1}{t}\] có \[g'\left( t \right) = 4 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{2}\].
BBT:
Dựa vào BBT ta thấy phương trình có nghiệm \[t >0 \Leftrightarrow m \ge 4\].
Kết hợp điều kiện \[\left\{ {\begin{array}{*{20}{l}}{m \in {\mathbb{Z}^ + }}\\{m \le 2021}\end{array}} \right. \Rightarrow m \in \left\{ {4;5;6;...;2020;2021} \right\}\].
Vậy có 2018 giá trị của mthỏa mãn yêu cầu bài toán.
Đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247