(TH): Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình [{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0 ] có nghiệm?

Câu hỏi :

Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\] có nghiệm?

A. \[2019\]

B. \[2018\]

C. \[2021\]

D. 2017

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:

- Đặt ẩn phụ \[t = {2^{x - 2}} >0\].

- Cô lập m, đưa phương trình về dạng \[m = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].

- Lập BBT của hàm số \[g\left( t \right)\] khi \[t >0\].

- Dựa vào BBT tìm giá trị của m để phương trình có nghiệm.

Giải chi tiết:

Ta có \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0 \Leftrightarrow 4.{\left( {{2^{x - 2}}} \right)^2} - m{.2^{x - 2}} + 1 = 0\].

Đặt \[t = {2^{x - 2}} >0\], phương trình đã cho trở thành \[4{t^2} - mt + 1 = 0 \Leftrightarrow m = \frac{{4{t^2} + 1}}{t} = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].

Xét hàm số \[g\left( t \right) = \frac{{4{t^2} + 1}}{t} = 4t + \frac{1}{t}\] có \[g'\left( t \right) = 4 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{2}\].

BBT:

 (TH): Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\] có nghiệm?  (ảnh 1)

Dựa vào BBT ta thấy phương trình có nghiệm \[t >0 \Leftrightarrow m \ge 4\].

Kết hợp điều kiện \[\left\{ {\begin{array}{*{20}{l}}{m \in {\mathbb{Z}^ + }}\\{m \le 2021}\end{array}} \right. \Rightarrow m \in \left\{ {4;5;6;...;2020;2021} \right\}\].

Vậy có 2018 giá trị của mthỏa mãn yêu cầu bài toán.

Đáp án B

Copyright © 2021 HOCTAP247