A. \[\frac{{435}}{{988}}\]
B. \[\frac{{135}}{{988}}\]
C. \[\frac{{285}}{{494}}\]
D. \[\frac{{5750}}{{9880}}\]
C
Phương pháp giải:
- Tính số phần tử của không gian mẫu là \[n\left( \Omega \right)\] là số cách chọn 3 học sinh bất kì.
- Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”. Xét 2 TH để tính số phần tử của biến cố A là \[n\left( A \right)\] .
+ TH1: Chọn 1 nam và 2 nữ
+ TH2: Chọn 2 nam và 1 nữ
- Tính xác suất của biến cố A: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
Giải chi tiết:
Số cách chọn 3 bạn bất kì là \[C_{40}^3\] nên số phần tử của không gian mẫu là \[n\left( \Omega \right) = C_{40}^3\].
Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”.
TH1: Chọn 1 nam và 2 nữ có \[C_{30}^1.C_{10}^2\] cách.
TH2: Chọn 2 nam và 1 nữ có \[C_{30}^2.C_{10}^1\] cách.
\[ \Rightarrow n\left( A \right) = C_{40}^1.C_{10}^2 + C_{40}^2.C_{10}^1\].
Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{30}^1.C_{10}^2 + C_{30}^2.C_{10}^1}}{{C_{40}^3}} = \frac{{15}}{{26}} = \frac{{285}}{{494}}\].
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247