(TH): Số nghiệm nguyên thuộc đoạn [ left[ { - 99;{ mkern 1mu} { mkern 1mu} 100} right] ] của bất phương trình [{ left( { sin frac{ pi }{5}} right)^x} ge { left( { cos frac{{3 pi }}...

Câu hỏi :

Số nghiệm nguyên thuộc đoạn \[\left[ { - 99;{\mkern 1mu} {\mkern 1mu} 100} \right]\] của bất phương trình \[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}}\] là:

A. 5

B. 101

C. 100

D. 4

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Sử dụng tính chất \[\sin \alpha = \cos \left( {\frac{\pi }{2} - \alpha } \right)\].

- Giải bất phương trình mũ: \[{a^{f\left( x \right)}} \ge {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) \le g\left( x \right){\mkern 1mu} {\mkern 1mu} khi{\mkern 1mu} {\mkern 1mu} 0 < a < 1\].

- Giải bất phương trình đại số tìm x, sau đó kết hợp điều kiện đề bài.

Giải chi tiết:

Vì \[\frac{\pi }{5} + \frac{{3\pi }}{{10}} = \frac{{5\pi }}{{10}} = \frac{\pi }{2}\] nên \[\sin \frac{\pi }{5} = \cos \frac{{3\pi }}{{10}}\].

Khi đó ta có

\[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}} \Leftrightarrow {\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\sin \frac{\pi }{5}} \right)^{\frac{4}{x}}} \Leftrightarrow x \le \frac{4}{x}{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} 0 < \sin \frac{\pi }{5} < 1} \right)\]

\[ \Leftrightarrow \frac{{{x^2} - 4}}{x} \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \le - 2}\\{0 < x \le 2}\end{array}} \right.\]

Kết hợp điều kiện \[x \in \left[ { - 99;100} \right]\] ta có \[x \in \left[ { - 99; - 2} \right] \cup \left( {0;2} \right]\].

Vậy phương trình đã cho có 100 nghiệm nguyên thỏa mãn.

Đáp án C

Copyright © 2021 HOCTAP247