A. 5
B. 10
C. 6
D. vô số
C
Phương pháp giải:
- Để hàm số đồng biến trên \[\left( {0;1} \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\].
- Cô lập \[m\], đưa bất phương trình về dạng \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right)\].
- Lập BBT hàm số \[g\left( x \right)\] trên \[\left( {0;1} \right)\] và kết luận.
Giải chi tiết:
TXĐ: \[D = \left( {0; + \infty } \right)\] nên hàm số xác định trên \[\left( {0;1} \right)\].
Ta có \[y' = 8{x^2} + \frac{2}{x} - m\].
Để hàm số đồng biến trên \[\left( {0;1} \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\] \[ \Leftrightarrow m \le 8{x^2} + \frac{2}{x}{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\].
Đặt \[g\left( x \right) = 8{x^2} + \frac{2}{x},{\mkern 1mu} {\mkern 1mu} x \in \left( {0;1} \right)\], khi đó ta có \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right)\].
Ta có \[g'\left( x \right) = 16x - \frac{2}{{{x^2}}} = \frac{{16{x^3} - 2}}{{{x^2}}}\]; \[g'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\].
BBT:
Dựa vào BBT \[ \Rightarrow m \le 6\]. Kết hợp điều kiện \[m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {1;2;3;4;5;6} \right\}\].
Vậy có 6 giá trị của mthỏa mãn yêu cầu bài toán.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247