A.\[ - \frac{3}{4} < m < 0\]
B.\[m \le 0\]
C.\[ - \frac{3}{4} \le m \le 0\]
D.\[m \le - \frac{3}{4}\]
D
Phương pháp giải:
- Để hàm số nghịch biến trên \[\mathbb{R}\] thì \[y' \le 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\]
- Xét 2 TH: \[m = 0\] và \[\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{\Delta ' \le 0}\end{array}} \right.\].
Giải chi tiết:
TXĐ: \[D = \mathbb{R}\].
Ta có: \[y' = 3m{x^2} + 2mx - m - 1\].
Để hàm số nghịch biến trên \[\mathbb{R}\] thì \[y' \le 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\].
\[ \Leftrightarrow 3m{x^2} + 2mx - m - 1 \le 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m = 0}\\{ - 1 \le 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}{\mkern 1mu} {\mkern 1mu} \left( {luon{\mkern 1mu} {\mkern 1mu} dung} \right)}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{\Delta ' = {m^2} + 3m\left( {m + 1} \right) \le 0}\end{array}} \right.}\end{array}} \right.\]\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{4{m^2} + 3m \le 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{ - \frac{3}{4} \le m \le 0}\end{array}} \right.}\end{array}} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{ - \frac{3}{4} \le m < 0}\end{array}} \right. \Leftrightarrow - \frac{3}{4} \le m \le 0\]
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247