A.\[ - 1\]
B. 1
C. 3
D. 5
C
Phương pháp giải:
- Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Phân tích \[M{A^2} + 2M{B^2} - M{C^2}\] theo MI.
- Chứng minh đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.
- Với I cố định, tìm vị trí của để \[I{M_{\min }}\].
- Tìm tọa độ điểm I, từ đó dựa vào mối quan hệ giữa IM và \[\left( P \right)\] để tìm tọa độ điểm M.
Giải chi tiết:
Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Khi đó ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} M{A^2} + 2M{B^2} - M{C^2} = {\overrightarrow {MA} ^2} + 2{\overrightarrow {MB} ^2} - {\overrightarrow {MC} ^2}\]
\[ = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} - {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2} = 2{\overrightarrow {MI} ^2} + 2\overrightarrow {MI} \left( {\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} } \right) + {\overrightarrow {IA} ^2} + 2{\overrightarrow {IB} ^2} - {\overrightarrow {IC} ^2}\]
\[ = 2M{I^2} + \left( {I{A^2} + 2I{B^2} - I{C^2}} \right)\]
Vì \[I,{\mkern 1mu} {\mkern 1mu} A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\] cố định nên \[I{A^2} + 2I{B^2} - I{C^2}\] không đổi, do đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.
Mà \[M \in \left( P \right)\] nên \[IM\] đạt giá trị nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của I lên \[\left( P \right)\] hay \[IM \bot \left( P \right) \Rightarrow \overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, với \[\overrightarrow {{n_P}} \] là 1 vtpt của \[\left( P \right)\].
Tìm tọa độ điểm I ta gọi \[I\left( {x;y;z} \right)\]. Ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]
\[ \Rightarrow \left( {x - 1;y;z - 2} \right) + 2\left( {x + 1;y - 1;z - 3} \right) - \left( {x - 3;y - 2;z} \right) = \vec 0\]
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 + 2\left( {x + 1} \right) - \left( {x - 3} \right) = 0}\\{y + 2\left( {y - 1} \right) - \left( {y - 2} \right) = 0}\\{z - 2 + 2\left( {z - 3} \right) - z = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2x + 4 = 0}\\{2y = 0}\\{2z - 8 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = 0}\\{z = 4}\end{array}} \right. \Rightarrow I\left( { - 2;0;4} \right)\]
Khi đó ta có \[\overrightarrow {IM} = \left( {a + 2;b;c - 4} \right)\]
Vì \[\overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, lại có \[M \in \left( P \right)\] nên ta có hệ phương trình:
\[\left\{ {\begin{array}{*{20}{l}}{\frac{{a + 2}}{1} = \frac{b}{2} = \frac{{c - 4}}{{ - 2}}}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2a - b + 4 = 0}\\{b + c - 4 = 0}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2}\\{c = 2}\end{array}} \right.\]
Vậy \[a + b + c = - 1 + 2 + 2 = 3\]
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247