A. 2
B. 1
C. 0
D. 3
A
Phương pháp giải:
Sử dụng phương pháp logarit hai vế.
Giải chi tiết:
Lấy logarit cơ số 3 hai vế của phương trình ta có:
\[{2^x} = {3^{{x^2}}} \Leftrightarrow {\log _3}{2^x} = {\log _3}{3^{{x^2}}}\]\[ \Leftrightarrow x{\log _3}2 = {x^2} \Leftrightarrow x\left( {x - {{\log }_3}2} \right) = 0\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x - {{\log }_3}2 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {{\log }_3}2}\end{array}} \right.\]
Vậy phương trình đã cho có 2 nghiệm thực.
Đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247