A.\[\left( {0;0} \right)\]
B.\[\left( {0;2} \right)\]
C.\[\left( {1;0} \right)\]
D.\[\left( { - 1;4} \right)\]
B
Phương pháp giải:
- Hàm đa thức bậc ba nhận điểm uốn làm tâm đối xứng.
- Giải phương trình \[y'' = 0\] tìm hoành độ điểm uốn, từ đó suy ra tọa độ điểm uốn.
Giải chi tiết:
Ta có: \[y = {x^3} - 3x + 2 \Rightarrow y' = 3{x^2} - 3;{\mkern 1mu} {\mkern 1mu} y'' = 6x\].
Cho \[y'' = 0 \Leftrightarrow 6x = 0 \Leftrightarrow x = 0 \Rightarrow y = 2\]
⇒ Hàm số đã cho có điểm uốn là \[\left( {0;2} \right)\].
Vì hàm đa thức bậc ba nhận điểm uốn làm tâm đối xứng.
Vậy hàm số đã cho có tâm đối xứng là \[\left( {0;2} \right)\].
Đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247