A.\[x - 2y - 2 = 0\]
B.\[x + y - 2 = 0\]
C.\[x - y + 2 = 0\]
D.\[x - y - 2 = 0\]
D
Phương pháp giải:
- Sử dụng công thức \[\overline {{z_1}} + \overline {{z_2}} = \overline {{z_1} + {z_2}} \]; \[\left| {\bar z} \right| = \left| z \right|\].
- Đặt \[z = a + bi\], sử dụng công thức \[\left| z \right| = \sqrt {{a^2} + {b^2}} \], biến đổi rút ra mối quan hệ giữa \[a,{\mkern 1mu} {\mkern 1mu} b\] và kết luận.
Giải chi tiết:
Theo bài ra ta có
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\]
\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\bar z + \overline {1 + i} } \right| \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\overline {z + 1 + i} } \right|\]\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {z + 1 + i} \right|\]
Đặt ta có:
\[\left| {a + bi - 1 + 3i} \right| = \left| {a + bi + 1 + i} \right|\]
\[ \Leftrightarrow \left| {\left( {a - 1} \right) + \left( {b + 3} \right)i} \right| = \left| {a + 1 + \left( {b + 1} \right)i} \right|\]\[ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b + 3} \right)^2} = {\left( {a + 1} \right)^2} + {\left( {b + 1} \right)^2}\]
\[ \Leftrightarrow - 2a + 1 + 6b + 9 = 2a + 1 + 2b + 1 \Leftrightarrow 4a - 4b - 8 = 0\]
\[ \Leftrightarrow a - b - 2 = 0\]
Vậy tập hợp các điểm biểu diễn số phức \[z\] là đường thẳng \[x - y - 2 = 0\].
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247