(VD): Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn [ left| {z - 1 + 3i} right| = left| { bar z + 1 - i} right| ].

Câu hỏi :

Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn \[\left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\].

A.\[x - 2y - 2 = 0\]

B.\[x + y - 2 = 0\]

C.\[x - y + 2 = 0\]

D.\[x - y - 2 = 0\]

* Đáp án

D

* Hướng dẫn giải

Phương pháp giải:

- Sử dụng công thức \[\overline {{z_1}} + \overline {{z_2}} = \overline {{z_1} + {z_2}} \]; \[\left| {\bar z} \right| = \left| z \right|\].

- Đặt \[z = a + bi\], sử dụng công thức \[\left| z \right| = \sqrt {{a^2} + {b^2}} \], biến đổi rút ra mối quan hệ giữa \[a,{\mkern 1mu} {\mkern 1mu} b\] và kết luận.

Giải chi tiết:

Theo bài ra ta có

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\]

\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\bar z + \overline {1 + i} } \right| \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\overline {z + 1 + i} } \right|\]\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {z + 1 + i} \right|\]

Đặt z=a+bi ta có:

\[\left| {a + bi - 1 + 3i} \right| = \left| {a + bi + 1 + i} \right|\]

\[ \Leftrightarrow \left| {\left( {a - 1} \right) + \left( {b + 3} \right)i} \right| = \left| {a + 1 + \left( {b + 1} \right)i} \right|\]\[ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b + 3} \right)^2} = {\left( {a + 1} \right)^2} + {\left( {b + 1} \right)^2}\]

\[ \Leftrightarrow - 2a + 1 + 6b + 9 = 2a + 1 + 2b + 1 \Leftrightarrow 4a - 4b - 8 = 0\]

\[ \Leftrightarrow a - b - 2 = 0\]

Vậy tập hợp các điểm biểu diễn số phức \[z\] là đường thẳng \[x - y - 2 = 0\].

Đáp án D

Copyright © 2021 HOCTAP247