Tồn tại bao nhiêu số nguyên (m ) để hàm số (y = frac{{x - 2}}{{x - m}} ) đồng biến trên khoảng ( left( { - infty ; , - 1} right) ).

Câu hỏi :

Tồn tại bao nhiêu số nguyên \(m\) để hàm số \(y = \frac{{x - 2}}{{x - m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 1} \right)\).

A.\(3\).

B.\(4\).

C.\(2\).

D.Vô số.

* Đáp án

A

* Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\backslash \left\{ m \right\}.\)

Ta có \(y' = \frac{{ - m + 2}}{{{{\left( {x - m} \right)}^2}}}.\)

Hàm số \(y = \frac{{x - 2}}{{x - m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}y' < 0\\m \notin \left( { - \infty ; - 1} \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - m + 2 >0\\m \ge - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2\\m \ge - 1\end{array} \right. \Leftrightarrow - 1 \le m < 2.\) Mặt khác \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}.\)

Đáp án A

Copyright © 2021 HOCTAP247