A.6.
B.4.
C.7.
D.5.
C
Ta có \(y' = - 3{x^2} - 2mx + 4m + 9.\)
Để hàm số đã cho nghịch biến trên \(\mathbb{R}\) thì \(y' \le 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow - 3{x^2} - 2mx + 4m + 9 \le 0,\forall x \in \mathbb{R} \Leftrightarrow \Delta ' \le 0\)
\( \Leftrightarrow {m^2} + 3\left( {4m + 9} \right) \le 0 \Leftrightarrow - 9 \le m \le - 3.\)
Vì \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 9; - 8;...; - 3} \right\}.\)
Vậy có 7 số nguyên \(m\) thỏa mãn yêu cầu bài toán.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247