Cho hàm số (y = f left( x right) ) có đạo hàm (f' left( x right) = left( { ln x + 1} right) left( {{e^x} - 2019} right) left( {x + 1} right) ) trên khoảng ( left( {0; + infty } rig...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

A. 2.

B. 3.

C.0.

D. 1.

* Đáp án

A

* Hướng dẫn giải

Tập xác định: \(D = \left( {0; + \infty } \right).\)

\(f'\left( x \right) = 0 \Leftrightarrow \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\ln x + 1 = 0\\{e^x} - 2019 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\ln x = - 1\\{e^x} = 2019\\x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{e} \in \left( {0; + \infty } \right)\\x = \ln 2019 \in \left( {0; + \infty } \right)\\x = - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \rig (ảnh 1)

Hàm số đạt cực đại tại \(x = \frac{1}{e}.\) Đạt cực tiểu tại \(x = \ln 2019.\)

Vậy trên khoảng \(\left( {0; + \infty } \right)\) thì hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

Đáp án A

Copyright © 2021 HOCTAP247