Biết rằng tập hợp tất cả các giá trị thực của tham số (m ) để phương trình ({ left( {2 + sqrt 3 } right)^x} + m{ left( {2 - sqrt 3 } right)^x} = 1 ) có hai nghiệm phân biệt là khoả...

Câu hỏi :

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

A.\(T = 5.\)

B.\(T = 7.\)

C.\(T = 2.\)

D. \(T = 1.\)

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = {\left( {2 + \sqrt 3 } \right)^x},t >0,\) khi đó \(x = {\log _{\left( {2 + \sqrt 3 } \right)}}t\) và mỗi \(t >0\) cho ta đúng một nghiệm \(x.\)

Phương trình đã cho được viết lại \(t + \frac{m}{t} - 1 = 0 \Leftrightarrow {t^2} - t + m = 0\left( * \right).\) Bải toàn trở thành tìm \(m\) để phương trình \(\left( * \right)\) có hai nghiệm dương phân biệt \({t_1},{t_2}.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta >0\\P = {t_1}{t_2} >0\\S = {t_1} + {t_2} >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 - 4m >0\\m >0\end{array} \right. \Leftrightarrow 0 < m < \frac{1}{4}.\) Suy ra: \(a = 0;b = \frac{1}{4}.\)

Vậy \(T = 3a + 8b = 2.\)

Đáp án C

Copyright © 2021 HOCTAP247