A. 4.
B. 1.
C. 2.
D. 3.
C
Hàm số \(y = \frac{{9x + 1}}{{\sqrt {2020 - {x^2}} }}\)
TXĐ: \(D = \left( { - \sqrt {2020} ;\sqrt {2020} } \right)\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - \sqrt {2020} } \right)}^ + }} y = - \infty ;\mathop {\lim }\limits_{x \to {{\left( {\sqrt {2020} } \right)}^ - }} y = + \infty \)
\( \Rightarrow \) đồ thị hàm số có hai tiệm cận đứng là \(x = - \sqrt {2020} \) và \(x = \sqrt {2020} \)
Vậy đồ thị hàm số \(y = \frac{{9x + 1}}{{\sqrt {2020 - {x^2}} }}\) có 2 đường tiệm cận.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247