A.0.
B.4.
C.2.
D.3.
C
Ta có: \(y' = 3{x^2} + m + \frac{2}{{5{x^3}}}.\)
Hàm số \(y = {x^3} + mx - \frac{1}{{5{x^2}}}\) đồng biến trên \(\left( {0; + \infty } \right)\)
\( \Leftrightarrow y' \ge 0,\forall x \in \left( {0; + \infty } \right).\)
\( \Leftrightarrow 3{x^2} + m + \frac{2}{{5{x^3}}} \ge 0,\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow m \ge - 3{x^2} - \frac{2}{{5{x^3}}},\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow m \ge \mathop {\max }\limits_{\left( {0; + \infty } \right)} g\left( x \right)\) với \(g\left( x \right) = - 3{x^2} - \frac{2}{{5{x^3}}}.\)
Xét \(g\left( x \right) = - 3{x^2} - \frac{2}{{5{x^3}}}\) trên \(\left( {0; + \infty } \right),\) ta có \(g'\left( x \right) = - 6x + \frac{6}{{5{x^4}}};g'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{{\sqrt[5]{5}}}.\)
Bảng biến thiên
Từ bảng biến thiên suy ra \(m \ge - 2,6.\)
Vậy \(m = - 2\) và \(m = 1\) thỏa mãn.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247