Cho tứ diện đều (ABCD ) cạnh (a. ) Lấy (N,M ) là trung điểm của (AB ) và (AC. ) Tính khoảng cách (d ) giữa (CN ) và (DM. )

Câu hỏi :

Cho tứ diện đều \(ABCD\) cạnh \(a.\) Lấy \(N,M\) là trung điểm của \(AB\) và \(AC.\) Tính khoảng cách \(d\) giữa \(CN\) và \(DM.\) 

A.\(d = a\sqrt {\frac{3}{2}} .\)

B.\(d = \frac{{a\sqrt {10} }}{{10}}.\)

C.\(d = \frac{{a\sqrt 3 }}{2}.\)

D.\(d = \frac{{a\sqrt {70} }}{{35}}.\)

* Đáp án

D

* Hướng dẫn giải

Cho tứ diện đều \(ABCD\) cạnh \(a.\) Lấy \(N,M\) là trung điểm của \(AB\) và \(AC.\) Tính khoảng cách \(d\) giữa \(CN\) và \(DM.\)  (ảnh 1)

Gọi \(P\) là trung điểm của \(AN \Rightarrow MP//CN,MP \subset \left( {DMP} \right) \Rightarrow CN//\left( {DMP} \right)\)

\( \Rightarrow d\left( {CN,DM} \right) = d\left( {CN,\left( {DMP} \right)} \right) = d\left( {N,\left( {DMP} \right)} \right) = d\left( {A,\left( {DMP} \right)} \right).\)

Ta có \(ABCD\) là tứ diện đều cạnh \(a \Rightarrow {V_{ABCD}} = \frac{{{a^3}\sqrt 2 }}{{12}}.\)

Ta có \(\frac{{{V_{A.DMP}}}}{{{V_{A.DBC}}}} = \frac{{AP}}{{AB}}.\frac{{AM}}{{AC}} = \frac{1}{8} \Rightarrow {V_{A.DMP}} = \frac{1}{8}{V_{A.DBC}} = \frac{{{a^3}\sqrt 2 }}{{96}}.\)

Tam giác \(ACD\) đều cạnh \(a,\) có \(M\) là trung điểm của \(AC \Rightarrow DM = \frac{{a\sqrt 3 }}{2}.\)

Tam giác \(ABC\) đều cạnh \(a,\) có \(N\) là trung điểm của \(AB \Rightarrow CN = \frac{{a\sqrt 3 }}{2} \Rightarrow MP = \frac{1}{2}CN = \frac{{a\sqrt 3 }}{4}.\)

Tam giác \(ADP,\) có \(AP = \frac{a}{4},AD = a,\widehat {PAD} = {60^0}.\)

\( \Rightarrow DP = \sqrt {A{D^2} + A{P^2} - 2.AD.AP.\cos \widehat {PAD}} = \frac{{a\sqrt {13} }}{4}.\)

Đặt \(p = \frac{{DM + DP + MP}}{2} = \frac{{a\left( {\sqrt {13} + 3\sqrt 3 } \right)}}{8}.\)

\( \Rightarrow {S_{\Delta DMP}} = \sqrt {p\left( {p - DM} \right)\left( {p - DP} \right)\left( {p - MP} \right)} = \frac{{{a^2}\sqrt {35} }}{{32}}\)

Lại có \({V_{A.DMP}} = \frac{1}{3}{S_{\Delta DMP}}.d\left( {A,\left( {DMP} \right)} \right) \Rightarrow d\left( {A,\left( {DMP} \right)} \right) = \frac{{3{V_{A.DMP}}}}{{{V_{\Delta DMP}}}} = \frac{{3.\frac{{{a^3}\sqrt 2 }}{{96}}}}{{\frac{{{a^2}\sqrt {35} }}{{32}}}} = \frac{{a\sqrt {70} }}{{35}}.\)

Vậy \(d\left( {CN,DM} \right) = \frac{{a\sqrt {70} }}{{35}}.\)

Đáp án D

Copyright © 2021 HOCTAP247