Một mặt cầu tâm (O ) nằm trên mặt phẳng đáy của hình chóp tam giác đều (S.ABC ) có tất cả các cạnh bằng nhau, các đỉnh (A,B,C ) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng...

Câu hỏi :

Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp thỏa mãn? 

A.\(l \in \left( {1;\sqrt 2 } \right).\)

B.\(l \in \left( {2;3\sqrt 2 } \right).\)

C.\(l \in \left( {\sqrt 3 ;2} \right).\)

D. \(l \in \left( {\frac{{\sqrt 3 }}{2};1} \right).\)

* Đáp án

D

* Hướng dẫn giải

Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài  (ảnh 1)

Gọi \(D\) là trung điểm của đoạn \(AB,\) kẻ \(OI \bot SD,\) dễ dàng chứng minh được \(OI \bot \left( {SAB} \right).\)

Suy ra \(I\) là tâm đường tròn \(\left( C \right)\) giao tuyến của mặt cầu tâm \(O\) với mặt phẳng \(\left( {SAB} \right).\) Gọi \(M,N\) lần lượt là giao điểm của đường tròn \(\left( C \right)\) với \(SB,SA;K\) là trung điểm của \(MB.\)

Giả sử \(AB = a,\) theo giả thiết ta suy ra \(OC = 1 \Leftrightarrow \frac{{a\sqrt 3 }}{2} = 1 \Leftrightarrow a = \sqrt 3 .\)

Ta có \(SD = CD = \frac{3}{2},OD = \frac{1}{2},SO = \sqrt {S{C^2} - O{C^2}} = \sqrt 2 ,OI = \frac{{SO.OD}}{{SD}} = \frac{{\sqrt 2 }}{3},\) \(ID = \frac{{O{D^2}}}{{SD}} = \frac{1}{6},SI = \frac{4}{3}.\)

Gọi \(r\) là bán kính đường tròn \(\left( C \right),\) khi đó \(r = \sqrt {1 - O{I^2}} = \frac{{\sqrt 7 }}{3}.\)

Ta có tam giác \(SIK\) vuông tại \(K\) và góc \(\angle ISK = {30^0}\) suy ra \(IK = \frac{1}{2}IS = \frac{2}{3}\)

Xét tam giác \(MIK\) có \(\cos I = \frac{{IK}}{{IM}} = \frac{2}{{\sqrt 7 }} \Rightarrow I \approx {28^0} \Rightarrow \angle MIN \approx {64^0}\)

Khi đó chiều dài cung \(MN\) bằng \(\frac{{64}}{{180}}.\frac{{\sqrt 7 }}{3} = \frac{{16\sqrt 7 }}{{135}}.\) Vậy tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp là \(l = \frac{{16\sqrt 7 }}{{45}} \approx 0,94.\)

Đáp án D

Copyright © 2021 HOCTAP247