Cho hình chóp tứ giác đều [S.ABCD ] có cạnh đáy bằng [a ], cạnh bên bằng [ frac{{a sqrt 5 }}{2} ]. Số đo góc giữa hai mặt phẳng [ left( {SAB} right) ] và [ left( {ABCD} right) ] là...

Câu hỏi :

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:

A.\({30^0}\).

B.\({90^0}\).

C.\({45^0}\).

D.\({60^0}\).

* Đáp án

D

* Hướng dẫn giải

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là: (ảnh 1)

Gọi \(O\) là giao điểm của \(AC\) và \(BD.\)

Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\).

Gọi \(H\) là trung điểm của \(AB.\)

Ta có \(\left\{ \begin{array}{l}SO \bot AB\\OH \bot AB\end{array} \right. \Rightarrow AB \bot \left( {SHO} \right) \Rightarrow \widehat {SHO} = \widehat {\left( {\left( {SAB} \right);\left( {ABCD} \right)} \right).}\)

\(OH = \frac{1}{2}AD = \frac{a}{2}\)

\(OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

Trong tam giác vuông \(SOA\) có \(SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}.\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \sqrt 3 \Rightarrow \widehat {SHO} = {60^0}.\)

Số đo góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\) là \({60^0}.\)

Đáp án D

Copyright © 2021 HOCTAP247