A.\[2\sqrt 6 \].
B.\[\frac{6}{{\sqrt 3 }}\].
C.\[\frac{{\sqrt 6 }}{2}\].
D.\[\frac{{\sqrt 6 }}{3}\].
D
Gọi \(H,K\) lần lượt là trung điểm của \(CD\) và \(AB.\)
\(\Delta ACD\) cân tại \(A\) nên \[AH \bot CD \Rightarrow AH \bot \left( {BCD} \right) \Rightarrow d\left( {A;\left( {BCD} \right)} \right) = AH\]
Đặt \(AH = x.\)
\(HD = \sqrt {A{D^2} - A{H^2}} = \sqrt {1 - {x^2}} \).
\(\Delta BCD = \Delta ACD \Rightarrow HB = HA = x\) (hai đường cao tương ứng bằng nhau).
\( \Rightarrow \frac{1}{{H{K^2}}} = \frac{1}{{H{A^2}}} + \frac{1}{{H{B^2}}} = \frac{2}{{{x^2}}} \Rightarrow HK = \frac{{x\sqrt 2 }}{2}.\)
Mặt khác, ta lại có:
\(\Delta ABD\) cân tại \(D\) nên \(DK \bot AB \Rightarrow AH \bot \left( {ABC} \right) \Rightarrow DK \bot CK \Rightarrow \Delta KCD\) là tam giác vuông tại \(K.\)
Suy ra \(HK = \frac{1}{2}CD \Leftrightarrow HK = HD = \frac{{x\sqrt 2 }}{2} = \sqrt {1 - {x^2}} \Leftrightarrow x = \frac{{\sqrt 6 }}{3}.\)
Vậy khoảng cách từ \(A\) đến mặt phẳng \(\left( {BCD} \right)\) bằng \(\frac{{\sqrt 6 }}{3}.\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247