A.\[4\sqrt 3 \].
B.\[\frac{2}{{\sqrt 3 }}\].
C.\[\sqrt 3 \].
D.\[\frac{4}{{\sqrt 3 }}\].
D
Gọi \(I,J\) lần lượt là trung điểm \(BC,SA\) nên \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SI\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right).\)
Hai tam giác cân \(ABC,SBC\) bằng nhau nên \(IA = IS\) suy ra \(\Delta ISA\) cân tại \(I.\)
Trong \(\Delta SBI\) vuông tại \(I\) ta có \(SI = \sqrt {S{B^2} - B{I^2}} = \sqrt {{1^2} - \frac{{{y^2}}}{4}} .\)
Trong \(\Delta SAI\) cân tại \(I\) ta có \(IJ = \sqrt {S{I^2} - S{J^2}} = \sqrt {{1^2} - \frac{{{y^2}}}{4} - \frac{{{x^2}}}{4}} .\)
Khi đó thể tích khối chóp \(S.ABC\) là \(V = \frac{1}{3}.BC.{S_{SAI}} = \frac{1}{3}.BC.AI.IJ = \frac{1}{6}xy\sqrt {1 - \frac{{{y^2} + {x^2}}}{4}} \)
Ta có \({x^2} + {y^2} \ge 2xy,\forall x,y \in \mathbb{R} \Rightarrow V \le \frac{1}{6}xy\sqrt {1 - \frac{{xy}}{2}} \)
\( \Leftrightarrow \frac{1}{{12}}\sqrt {xy} .\sqrt {xy} .\sqrt {4 - 2xy} \le \frac{1}{{12}}{\left( {\frac{{xy + xy + 4 - 2xy}}{3}} \right)^{\frac{3}{2}}} \le \frac{{2\sqrt 3 }}{{27}}\)
Dấu “=” xảy ra tại \(x = y = \frac{2}{{\sqrt 3 }}\) suy ra \(x + y = \frac{4}{{\sqrt 3 }}.\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247