Cho (x,y ) là các số thực thỏa mãn ({ log _9}x = { log _{12}}y = { log _{16}} left( {x + 2y} right) ). Giá trị tỉ số ( frac{x}{y} ) là

Câu hỏi :

Cho \(x,y\) là các số thực thỏa mãn \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 2y} \right)\). Giá trị tỉ số \(\frac{x}{y}\) là

A.\[\frac{{2 - \sqrt 2 }}{2}\].

B.\[\frac{{2 + \sqrt 2 }}{2}\].

C.\[\sqrt 2 + 1\].

D.\[\sqrt 2 - 1\].

* Đáp án

D

* Hướng dẫn giải

Đặt \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 2y} \right) = t \Rightarrow \left\{ \begin{array}{l}x = {9^t}\\y = {12^t}\\x + 2y = {16^t}\end{array} \right..\) Khi đó \(\frac{x}{y} = \frac{{{9^t}}}{{{{12}^t}}} = {\left( {\frac{3}{4}} \right)^t}.\)

Mặt khác ta có phương trình:

\({9^t} + {2.12^t} = {16^t} \Leftrightarrow {\left( {\frac{{16}}{9}} \right)^t} - 2.{\left( {\frac{4}{3}} \right)^t} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\frac{4}{3}} \right)^t} = 1 + \sqrt 2 \left( {nhan} \right)\\{\left( {\frac{4}{3}} \right)^t} = 1 - \sqrt 2 \left( {loai} \right)\end{array} \right.\)

Do đó \(\frac{x}{y} = {\left( {\frac{3}{4}} \right)^t} = \frac{1}{{1 + \sqrt 2 }} = \sqrt 2 - 1.\)

Đáp án D

Copyright © 2021 HOCTAP247