A.\[1\].
B.\[\frac{4}{5}\].
C.\[\frac{3}{4}\].
D.\[\frac{3}{5}\].
D
Ta có \({V_{S.MNCD}} = {V_{S.MCD}} + {V_{S.MNC}}\)
+ \(\frac{{{V_{S.MCD}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}}.\frac{{SC}}{{SC}}.\frac{{SD}}{{SD}} = \frac{1}{2} \Rightarrow {V_{S.MCD}} = \frac{1}{2}{V_{S.ACD}} = \frac{1}{4}{V_{S.ABCD}}.\)
+ \(\frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SC}}{{SC}} = \frac{1}{4} \Rightarrow {V_{S.MNC}} = \frac{1}{4}{V_{S.ABC}} = \frac{1}{8}{V_{S.ABCD}}.\)
\( \Rightarrow {V_{S.MNCD}} = {V_{S.MCD}} + {V_{S.MNC}} = \frac{1}{4}{V_{S.ABCD}} + \frac{1}{8}{V_{S.ABCD}} = \frac{3}{8}{V_{S.ABCD}}.\)
\( \Rightarrow {V_{MNABCD}} = {V_{S.ABCD}} - {V_{S.MNCD}} = {V_{S.ABCD}} - \frac{3}{8}{V_{S.ABCD}} = \frac{5}{8}{V_{S.ABCD}}.\)
Do đó \(\frac{{{V_{S.MNCD}}}}{{{V_{MNABCD}}}} = \frac{{\frac{3}{8}{V_{S.ABCD}}}}{{\frac{5}{8}{V_{S.ABCD}}}} = \frac{3}{5}.\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247