A.\(y = - 3x + 4.\)
B.\(y = - 3x + 14\) và \(y = - 3x + 2.\)
C.\(y = - 3x - 14\) và \(y = - 3x - 2.\)
D.\(y = - 3x - 14.\)
B
Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
Đạo hàm \(y' = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}},\) gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến với hệ số góc \(k = - 3\) ta có phương trình \(\frac{{ - 3}}{{{{\left( {{x_0} - 2} \right)}^2}}} = - 3 \Leftrightarrow {x_0} - 2 = \pm 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} = 1\end{array} \right..\)
Phương trình tiếp tuyến của đồ thị tại điểm \(M\left( {3;5} \right)\) là \(y = - 3x + 14.\)
Phương trình tiếp tuyến của đồ thị tại điểm \(M\left( {1; - 1} \right)\) là \(y = - 3x + 2.\)
Vậy đồ thị hàm số có hai tiếp tuyến trên với hệ số góc bằng \( - 3.\)
Đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247