Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC vuông tại A,AB = a,BC = 2a, mặt bên ACC'A' là hình vuông.

Câu hỏi :

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hình chiếu của \(A\) lên \(BC.\) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(MP\) và \(HN.\)

A.\(\frac{{a\sqrt 3 }}{4}.\)

B.\(\frac{{a\sqrt 3 }}{2}.\)

C.\(a\sqrt 3 .\)

D. \(\frac{a}{4}.\)

* Đáp án

A

* Hướng dẫn giải

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hìn (ảnh 1)

Gọi \(P',M'\) lần lượt là trung điểm của \(AB\) và \(A'C'.\)

Ta có \(\left\{ \begin{array}{l}P'M//BC\\P'M \not\subset \left( {BCC'B'} \right)\\BC \subset \left( {BCC'B'} \right)\end{array} \right. \Rightarrow P'M//\left( {BCC'B'} \right)\left( 1 \right)\)

Tương tự ta chứng minh được \(M'M//\left( {BCC'B'} \right)\left( 2 \right)\)

Từ (1) và (2) ta có \(\left( {PP'MM'} \right)//\left( {BCC'B'} \right)\)

Ta có \(\left\{ \begin{array}{l}\left( {PP'MM'} \right)//\left( {BCC'B'} \right)\\PM \subset \left( {PP'MM'} \right)\\HN \subset \left( {BCC'B'} \right)\end{array} \right.\)

\( \Rightarrow d\left( {HN;PM} \right) = d\left( {\left( {PP'MM'} \right);\left( {BCC'B'} \right)} \right) = d\left( {M;\left( {BCC'B'} \right)} \right) = \frac{1}{2}d\left( {A;\left( {BCC'B'} \right)} \right)\)

Lại có \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\end{array} \right. \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AH\)

Trong tam giác vuông \(ABC\) có \(AC = \sqrt {B{C^2} - A{B^2}} = a\sqrt 3 \)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} = \frac{4}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{2}\)

Vậy khoảng cách giữa hai đường thẳng \(MP\) và \(HN\) là \(d\left( {MP;HN} \right) = \frac{{a\sqrt 3 }}{4}.\)

Đáp án A

Copyright © 2021 HOCTAP247