A. 2.
B.23.
C.20.
D. 3.
A
Ta có \(y' = 3{x^2} - 2x + 3m.\)
Để hàm số đồng biến trên \(\mathbb{R}\) thì \(y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow 3{x^2} - 2x + 3m \ge 0{\rm{ }}\forall x \in \mathbb{R}\)
\( \Leftrightarrow \Delta ' \le 0 \Leftrightarrow 1 - 9m \le 0 \Leftrightarrow m \ge \frac{1}{9}.\) Mà \(m\) nguyên thuộc đoạn [-20;2] nên suy ra \(\left[ \begin{array}{l}m = 1\\m = 2\end{array} \right..\)
Vậy có 2 giá trị của \(m\) thỏa mãn yêu cầu bài toán.
Đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247