Phương trình 3^x*5^((2x-1)/x)=15 có một nghiệm dạng x = -loga(b) với a,b là các số nguyên dương lớn hơn 1 và nhỏ hơn 8

Câu hỏi :

Phương trình \({3^x}{.5^{\frac{{2x - 1}}{x}}} = 15\) có một nghiệm dạng \(x = - {\log _a}b,\) với \(a,b\) là các số nguyên dương lớn hơn 1 và nhỏ hơn 8. Giá trị của biểu thức \(P = a + 2b\) bằng bao nhiêu?

A.\(P = 5.\)

B.\(P = 13.\)

C.\(P = 8.\)

D.\(P = 3.\)

* Đáp án

B

* Hướng dẫn giải

Điều kiện: \(x \ne 0.\)

Ta có

\({3^x}{.5^{\frac{{2x - 1}}{x}}} = 15 \Leftrightarrow {3^x}{.5^{\frac{{2x - 1}}{x}}} = 3.5 \Leftrightarrow {3^{x - 1}}{.5^{\frac{{2x - 1}}{x} - 1}} = 1 \Leftrightarrow {5^{\frac{{x - 1}}{x}}} = \frac{1}{{{3^{x - 1}}}} \Leftrightarrow {5^{\frac{{x - 1}}{x}}} = {3^{ - \left( {x - 1} \right)}}\)

Lấy lôgarit cơ số 5 hai vế của phương trình ta được:

\(\frac{{x - 1}}{x}{\log _5}5 = - \left( {x - 1} \right){\log _5}3 \Leftrightarrow \frac{{x - 1}}{x} = - \left( {x - 1} \right){\log _5}3\)

[x1=01x=log53[x=1x=1log53[x=1x=log35(TM)

Vậy \(a = 3,b = 5\) nên \(P = a + 2b = 3 + 2.5 = 13.\)

Đáp án B

Copyright © 2021 HOCTAP247