Cho hàm số y=f(x) liên tục trên R có đạo hàm f'(x)=(x^2-x-2)*(x^3-6x^2+11x-6)*g(x) với g(x) là hàm đa thức

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - x - 2} \right)\left( {{x^3} - 6{x^2} + 11x - 6} \right).g\left( x \right)\) với \(g\left( x \right)\) là hàm đa thức có đồ thị như hình vẽ.

A.5.

B.2.

C.3.

D.4.

* Đáp án

D

* Hướng dẫn giải

Ta có \(g\left( x \right) = a.x{\left( {x + 1} \right)^2}\left( {x - 1} \right)\left( {x - 2} \right)\left( {a >0} \right)\)

\(f'\left( x \right) = a\left( {{x^2} - x - 2} \right)\left( {{x^3} - 6{x^2} + 11x - 6} \right).x{\left( {x + 1} \right)^2}\left( {x - 1} \right)\left( {x - 2} \right)\)

\( \Leftrightarrow f'\left( x \right) = a\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 1} \right)\left( {x - 3} \right)\left( {x - 2} \right).x{\left( {x + 1} \right)^2}\left( {x - 1} \right)\left( {x - 2} \right)\)

\( \Leftrightarrow f'\left( x \right) = a{\left( {x + 1} \right)^3}{\left( {x - 2} \right)^3}{\left( {x - 1} \right)^2}\left( {x - 3} \right)x\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\\x = 1\\x = 3\\x = 0\end{array} \right.\). Trong đó \(x = 1\) là nghiệm kép, các nghiệm còn lại là nghiệm bội lẻ, nên \(f'\left( x \right)\) đổi dấu 4 lần khi qua các giá trị \(x = - 1;x = 0;x = 2;x = 3.\)

Vậy hàm số đã cho có 4 điểm cực trị.

Đáp án D

Copyright © 2021 HOCTAP247