A. 3.
B. 1.
C. 2.
D. 4.
C
Xét hàm số: \(y = \frac{1}{{f\left( x \right) + 2}}\)
Điều kiện xác định: \(\left\{ \begin{array}{l}f\left( x \right) \ne - 2\\x \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne {x_0}\left( {{x_0} < 1} \right)\\x \ne 1\end{array} \right.\)
Tập xác định: \(D = \left\{ {\forall x \in \mathbb{R};x \ne 1,x \ne 2,x \ne {x_0}\left( {{x_0} < 1} \right)} \right\}.\)
\(\mathop {\lim }\limits_{x \to {e^ + }} \frac{1}{{f\left( x \right) + 2}} = - \infty ;\mathop {\lim }\limits_{x \to {e^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{f\left( x \right) + 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{f\left( x \right) + 2}} = 0;\mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{f\left( x \right) + 2}} = 0\)
Vậy đồ thị \(y = \frac{1}{{f\left( x \right) + 2}}\) có 2 đường tiệm cận đứng \(x = 2,x = {x_0}\left( {{x_0} < 1} \right).\)
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247