Cho hàm số y=f(x) xác định trên R, liên tục trên mỗi khoảng xác định có bảng biến thiên như sau

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định có bảng biến thiên như sau

A. 3.

B. 1.

C. 2.

D. 4.

* Đáp án

C

* Hướng dẫn giải

Xét hàm số: \(y = \frac{1}{{f\left( x \right) + 2}}\)

Điều kiện xác định: \(\left\{ \begin{array}{l}f\left( x \right) \ne - 2\\x \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne {x_0}\left( {{x_0} < 1} \right)\\x \ne 1\end{array} \right.\)

Tập xác định: \(D = \left\{ {\forall x \in \mathbb{R};x \ne 1,x \ne 2,x \ne {x_0}\left( {{x_0} < 1} \right)} \right\}.\)

\(\mathop {\lim }\limits_{x \to {e^ + }} \frac{1}{{f\left( x \right) + 2}} = - \infty ;\mathop {\lim }\limits_{x \to {e^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{f\left( x \right) + 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{f\left( x \right) + 2}} = 0;\mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{f\left( x \right) + 2}} = 0\)

Vậy đồ thị \(y = \frac{1}{{f\left( x \right) + 2}}\) có 2 đường tiệm cận đứng \(x = 2,x = {x_0}\left( {{x_0} < 1} \right).\)

Đáp án C

Copyright © 2021 HOCTAP247