A. \(6\).
B. \(7\).
C. \(4\).
D. \(5\).
C
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0 \Rightarrow y = 0\) là đường tiệm cận ngang của đồ thị hàm số
Do đó đồ thị hàm số \(y = \frac{{x - 3}}{{{x^2} - 2mx + 2{m^2} - 9}}\) có đúng 3 đường tiệm cận khi và chỉ khi đồ thị hàm số có đúng hao tiệm cận đứng.
\( \Leftrightarrow \) phương trình \({x^2} - 2mx + 2{m^2} - 9 = 0\) có hai nghiệm phân biệt khác 3
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' >0\\{3^2} - 2.m.3 + 2{m^2} - 9 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9 - {m^2} >0\\{m^2} - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 < m < 3\\m \ne 0;m \ne 3\end{array} \right.\)
Mà \(m\) nguyên nên \(m \in \left\{ { - 2; - 1;1;2} \right\}.\) Vậy số phần tử của \(S\) là 4.
Phép vị tự tâm \(O,\) tỉ số \(k = - 2020\) biến đường tròn có bán kính \(R\) thành đường tròn có bán kính là \({R_1} = \left| { - 2020} \right|R = 2020.4 = 8080\)
Phép tịnh tiến theo véctơ \(\overrightarrow v = \left( {2019;2020} \right)\) biến đường tròn \(R'\) thành đường tròn có cùng bán kính
Vậy bán kính của đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm \(O\) tỉ số \(k = - 2020\) và phép tịnh tiến theo véctơ \(\overrightarrow v = \left( {2019;2020} \right)\) là 8080.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247