Cho hàm số y=(x+a)/(bx-2)(ab khác -2). Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(-1;2)

Câu hỏi :

Cho hàm số \(y = \frac{{x + a}}{{bx - 2}}\)\(\left( {ab \ne - 2} \right)\). Biết rằng \(a\) và \(b\) là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm \(A\left( { - 1;\,\,2} \right)\) song song với đường thẳng \(d:\,\,3x - y - 7 = 0\). Khi đó giá trị của \(a - 3b\) bằng

A. \( - 13\).

B. \[4\].

C. \[32\].

D. \[7\].

* Đáp án

C

* Hướng dẫn giải

Ta có \(y' = \frac{{ - 2 - ab}}{{{{\left( {bx - 2} \right)}^2}}}.\)

Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm \(A\left( { - 1;2} \right)\) là

\(\Delta :y'\left( { - 1} \right).\left( {x + 1} \right) + 2\) hay \(\Delta :y = y'\left( { - 1} \right).x + 2 + y'\left( { - 1} \right).\)

Để \(\Delta \) song song với đường thẳng \(d:y = 3x - 7\) thì \(\left\{ \begin{array}{l}y'\left( { - 1} \right) = 3\\2 + y'\left( { - 1} \right) \ne - 7\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - 2 - ab}}{{{{\left( {b + 2} \right)}^2}}} = 3{\rm{ }}\left( 1 \right)\\2 + \frac{{ - 2 - ab}}{{{{\left( {b + 2} \right)}^2}}} \ne - 7{\rm{ }}\left( 2 \right)\end{array} \right..\)

Mà điểm \(A\left( { - 1;2} \right)\) thuộc đồ thị hàm số nên \(\frac{{1 - a}}{{b + 2}} = 2 \Leftrightarrow a = - 2b - 3\) thay vào (1) ta được \(\frac{{ - 2 - b\left( { - 2b - 3} \right)}}{{{{\left( {b + 2} \right)}^2}}} = 3 \Leftrightarrow \left\{ \begin{array}{l}{b^2} + 9b + 14 = 0\\b \ne - 2\end{array} \right. \Leftrightarrow b = - 7\) suy ra \(a = 11\) thỏa mãn (2).

Vậy \(a - 3b = 11 - 3.\left( { - 7} \right) = 32.\)

Đáp án C

Copyright © 2021 HOCTAP247