Cho hình lăng trụ ABC.A'B'C'. Gọi I, J, K lần lượt là trọng tâm của các tam giác ABC, AA'C, A'B'C'. Mặt phẳng

Câu hỏi :

Cho hình lăng trụ \[ABC.A'B'C'\]. Gọi \[I\], \[J\], \[K\] lần lượt là trọng tâm của các tam giác \[ABC\], \[AA'C\], \[A'B'C'\]. Mặt phẳng nào sau đây song song với mặt phẳng \[\left( {IJK} \right)\]?

A. \[\left( {A'BC'} \right)\].

B. \[\left( {AA'B} \right)\].

C. (BB'C)

D. \[\left( {AA'C} \right)\].

* Đáp án

B

* Hướng dẫn giải

Cho hình lăng trụ \[ABC.A'B'C'\]. Gọi \[I\], \[J\], \[K\] lần lượt là trọng tâm của các tam giác \[ABC\], \[AA'C\], \[A'B'C'\]. Mặt phẳng nào sau đây song song với mặt phẳng \[\left( {IJK} \r (ảnh 1)

Do \(I\) và \(K\) là trọng tâm của \(\Delta ABC\) và \(A'B'C'\) nên \(IK//AA' \Rightarrow AA'//\left( {IJK} \right)\)\(\left( 1 \right)\)

Gọi \(E\) và \(F\) lần lượt là trung điểm của \(AA'\) và \(AB \Rightarrow \frac{{CJ}}{{CF}} = \frac{2}{3}\) và \(\frac{{CI}}{{CE}} = \frac{2}{3}\)

Kẻ \(JH//AA',H \in AC \Rightarrow \frac{{CH}}{{CA}} = \frac{{CJ}}{{CF}} = \frac{2}{3} \Rightarrow \frac{{CH}}{{CA}} = \frac{{CI}}{{CE}} \Rightarrow HI//AE\) hay \(AB//HI\)

\(JH//AA' \Rightarrow JH//IK \Rightarrow H \in \left( {IJK} \right) \Rightarrow HI \subset \left( {IJK} \right),\) mà \(AB//HI \Rightarrow AB//\left( {IJK} \right)\) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\)\( \Rightarrow \) mặt phẳng \(\left( {IJK} \right)\) song song với mặt phẳng \(\left( {AA'B} \right)\).

Đáp án B

Copyright © 2021 HOCTAP247