Cho hàm số f(x) liên tục trên R và hàm số f'(x) có bảng biến thiên như sau. Tìm mệnh đề đúng?

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục trên R và hàm số \(f'\left( x \right)\) có bảng biến thiên như sau. Tìm mệnh đề đúng?

A. Hàm số \(y = f\left( x \right)\) có 2 điểm cực tiểu và 1 điểm cực đại .

B. Hàm số \(y = f\left( x \right)\) có 1 điểm cực tiểuvà 1 điểm cực đại .

C. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất.

D. Hàm số \(y = f\left( x \right)\) có 1 điểm cực tiểu và 2 điểm cực đại .

* Đáp án

A

* Hướng dẫn giải

Dựa vào bảng biến thiên của \(f'\left( x \right),\) ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_1} \in \left( { - \infty ; - 1} \right)\\x = {x_2} \in \left( { - 1;1} \right)\\x = {x_3} \in \left( {1; + \infty } \right)\end{array} \right..\)

\(f'\left( x \right)\)đổi dấu từ âm sang dương khi đi qua điểm \({x_1},\) suy ra \({x_1}\) là điểm cực tiểu.

\(f'\left( x \right)\) đổi dấu từ dương sang âm khi đi qua điểm \({x_2},\) suy ra \({x_2}\) là điểm cực đại.

\(f'\left( x \right)\) đổi dấu từ âm sang dương khi đi qua điểm \({x_3},\) suy ra \({x_3}\) là điểm cực tiểu.

Đáp án A

Copyright © 2021 HOCTAP247