Cho hàm sốy=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình

Câu hỏi :

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \(\left| {f\left( {\cos x} \right)} \right| = - 2m + 3\) có 4 nghiệm thuộc khoảng [0;2π]

A.{1}

B.[1;32]

C.[1;32)

D.(0;1)

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = \cos x,\) với \(x \in \left[ {0;2\pi } \right]\) ta có \(t \in \left[ { - 1;1} \right]\) và:

+ Nếu \(t \in \left( { - 1;1} \right]\) thì tương ứng mỗi giá trị của \(t\) ta được 2 giá trị của \(x \in \left[ {0;2\pi } \right].\)

+ Nếu \(t = - 1\) thì ta chỉ được duy nhất giá trị \(x = \pi \in \left[ {0;2\pi } \right].\)

Phương trình viết lại: \(\left| {f\left( t \right)} \right| = - 2m + 3\left( 1 \right)\)

Trường hợp 1. \(m >\frac{3}{2}\) thì (1) vô nghiệm nên phương trình đã cho vô nghiệm.

Trường hợp 2. \(m = \frac{3}{2},\) khi đó (1) viết về \(\left| {f\left( t \right)} \right| = 0 \Leftrightarrow f\left( t \right) = 0,\) từ đồ thị có thể thấy phương trình thu được có đúng 1 nghiệm duy nhất trên \(\left( { - 1;1} \right],\) ta có điều kiện:

\(\left\{ \begin{array}{l} - 2m + 3 < 3\\2m - 3 \ge - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >0\\m \ge 1\end{array} \right. \Leftrightarrow m \ge 1.\)

Kết hợp lại ta được \(1 \le m < \frac{3}{2}.\)

Đáp án C

Copyright © 2021 HOCTAP247