Cho hình chóp S.ABCD đáy là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO = a. Khoảng cách

Câu hỏi :

Cho hình chóp S.ABCDđáy là hình vuông tâm \(O\) cạnh \(a,SO\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SO = a.\) Khoảng cách giữa \(SC\) và \(AB\) bằng:

A.\(\frac{{a\sqrt 3 }}{{15}}.\)

B.\(\frac{{2a\sqrt 3 }}{{15}}.\)

C.\(\frac{{2a\sqrt 5 }}{5}.\)

D. \(\frac{{a\sqrt 5 }}{5}.\)

* Đáp án

C

* Hướng dẫn giải

Cho hình chóp S.ABCDđáy là hình vuông tâm \(O\) cạnh \(a,SO\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SO = a.\) Khoảng cách giữa \(SC\) và \(AB\) bằng: (ảnh 1)

Gọi \(M\) là trung điểm của \(CD,\) khi đó \(OM \bot CD\) tại \(M.\)

Trong mặt phẳng \(\left( {SOM} \right)\) kẻ \(OH \bot SM\) tại \(H.\)

Ta có \(AB//CD \Rightarrow AB//\left( {SCD} \right).\)

Khi đó \(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = 2d\left( {O,\left( {SCD} \right)} \right).\)

Do \(\left\{ \begin{array}{l}OM \bot CD\\SO \bot CD\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot OH.\)

Mặt khác \(\left\{ \begin{array}{l}OH \bot CD\\OH \bot SM\end{array} \right. \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = OH.\)

Xét tam giác \(SOM\) có \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{{a^2}}} = \frac{5}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 5 }}{5}.\)

Vậy \(d\left( {AB,SC} \right) = \frac{{2a\sqrt 5 }}{5}.\)

Đáp án C

Copyright © 2021 HOCTAP247