Tính tổng tất cả các nghiệm của phương trình 5^(sinx)^2+5^(cosx)^2=2 căn 5 trên đoạn [0;2pi]

Câu hỏi :

Tính tổng tất cả các nghiệm của phương trình \({5^{{{\sin }^2}x}} + {5^{{{\cos }^2}x}} = 2\sqrt 5 \) trên đoạn \(\left[ {0;2\pi } \right].\) 

A.\(T = \frac{{3\pi }}{4}.\)

B.\(T = \pi .\)

C.\(T = 4\pi .\)

D. \(T = 2\pi .\)

* Đáp án

C

* Hướng dẫn giải

Ta có \({5^{{{\sin }^2}x}} + {5^{{{\cos }^2}x}} \ge 2\sqrt {{5^{{{\sin }^2}x}}{{.5}^{{{\cos }^2}x}}} \Leftrightarrow {5^{{{\sin }^2}x}} + {5^{{{\cos }^2}x}} \ge 2\sqrt {{5^{{{\sin }^2}x + {{\cos }^2}x}}} = 2\sqrt 5 \)

Đẳng thức xảy ra khi và chỉ khi \({5^{{{\sin }^2}x}} = {5^{{{\cos }^2}x}} \Leftrightarrow {\sin ^2}x = {\cos ^2}x\)

\( \Leftrightarrow \cos 2x = 0 \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2},k \in \mathbb{Z}.\)

Mà \(x \in \left[ {0;2\pi } \right]\) nên \(x \in \left\{ {\frac{\pi }{4};\frac{{3\pi }}{4};\frac{{5\pi }}{4};\frac{{7\pi }}{4}} \right\}\)

Khi đó \(T = \frac{\pi }{4} + \frac{{3\pi }}{4} + \frac{{5\pi }}{4} + \frac{{7\pi }}{4} = 4\pi .\)

Đáp án C

Copyright © 2021 HOCTAP247