A. \( - 4.\)
B.\( - 12{x^7}.\)
C.\(9{x^7}.\)
D. \( - 4{x^7}.\)
D
Với \(n \ge 2,n \in \mathbb{N}*\) ta có:
\(n = 4 \Rightarrow {\left( {{x^3} - \frac{1}{{{x^2}}}} \right)^n} = {\left( {{x^3} - \frac{1}{{{x^2}}}} \right)^4}\)
\({\left( {{x^3} - \frac{1}{{{x^2}}}} \right)^4} = \sum\limits_{k = 0}^4 {C_4^k.{{\left( {{x^3}} \right)}^{4 - k}}.\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {{x^2}} \right)}^k}}} = } \sum\limits_{k = 0}^4 {{{\left( { - 1} \right)}^k}.C_4^k.{x^{12 - 5k}}\left( {0 \le k \le 4,k \in \mathbb{N}} \right)} \)
Số hạng tổng quát \({\left( { - 1} \right)^k}C_4^k.{x^{12 - 5k}}\)
Phải có \({x^{12 - 5k}} = {x^7} \Rightarrow 12 - 5k = 7 \Leftrightarrow k = 1.\)
Số hạng chứa \({x^7}\) trong khai triển là: \({\left( { - 1} \right)^1}C_4^1.{x^7} = - 4{x^7}.\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247