Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=(2x-4)/(x-m) có tiệm cận đứng

Câu hỏi :

Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{{2x - 4}}{{x - m}}\) có tiệm cận đứng 

A. \(m < 2\).

B. \(m = 2.\)

C.  m2.

D. \(m >2.\)

* Đáp án

D

* Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\backslash \left\{ m \right\}\)

Đồ thị \(y = \frac{{h\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - 4}}{{x - m}}\) có tiệm cận đứng khi:

\(\mathop {\lim }\limits_{x \to {m^ - }} y = \mathop {\lim }\limits_{x \to {m^ - }} \frac{{2x - 4}}{{x - m}} = \pm \infty ;\mathop {\lim }\limits_{x \to {m^ + }} y = \mathop {\lim }\limits_{x \to {m^ + }} \frac{{2x - 4}}{{x - m}} = \pm \infty \)

\( \Leftrightarrow \left\{ \begin{array}{l}h\left( x \right) \ne 0\\g\left( m \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m - 4 \ne 0\\m - m = 0\end{array} \right. \Leftrightarrow m \ne 2.\)

Đáp án D

Copyright © 2021 HOCTAP247