Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a, góc giữa cạnh bên và mặt đáy bằng 60^0. Tính thể tích

Câu hỏi :

Cho hình chóp tam giác đều \(S.ABC\) có cạnh bên bằng \(2a,\) góc giữa cạnh bên và mặt đáy bằng \({60^0}.\) Tính thể tích của khối nón có đỉnh là \(S\) và đáy là đường tròn ngoại tiếp \(\Delta ABC.\) 

A.\(\frac{{\pi {a^3}\sqrt 3 }}{3}.\)

* Đáp án

A

* Hướng dẫn giải

Cho hình chóp tam giác đều \(S.ABC\) có cạnh bên bằng \(2a,\) góc giữa cạnh bên và mặt đáy bằng \({60^0}.\) Tính thể tích của khối nón có đỉnh là \(S\) và đáy là đường tròn ngoại tiếp \(\Delt (ảnh 1)

Gọi \(H\) là hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right).\) Suy ra \(SH\) là đường cao của hình chóp.

\(AH\) là hình chiếu của \(SA\) lên \(\left( {ABC} \right).\) Do đó góc giữa cạnh bên \(SA\) và \(\left( {ABC} \right)\) là góc \(\widehat {SAH} = {60^0}.\)

Nên \(h = SH = \sin {60^0},SA = \frac{{\sqrt 3 }}{2}.2a = a\sqrt 3 \)

Vì \(SA = SB = SC\) nên \(HA = HB = HC = R\)

Suy ra \(H\) cũng là tâm đường tròn ngoại tiếp ..

Bán kính \(R = \cos {60^0}.SA = 2a.\frac{1}{2} = a.\)

Thể tích khối nón có đỉnh là \(S\) và đáy là đường tròn ngoại tiếp \(\Delta ABC\) là

\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {a^2}a\sqrt 3 = \frac{{\pi {a^3}\sqrt 3 }}{3}.\)

Đáp án A

Copyright © 2021 HOCTAP247