Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy,

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

A.\(\frac{{a\sqrt 7 }}{3}.\)

B. \(\frac{{a\sqrt {11} }}{4}.\)

C.\(\frac{{a\sqrt {21} }}{6}.\)

D. \(\frac{{2a}}{3}.\)

* Đáp án

C

* Hướng dẫn giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là: (ảnh 1)

Gọi \(H\) là trung điểm của \(AB\).

Ta có \(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\) mà \(SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\)

Gọi \(I\) là tâm của hình vuông \(ABCD\)

Dựng \[Ix//SH\] khi đó \(Ix\) là trục của đường tròn ngoại tiếp đáy \(ABCD\)

Do tam giác \(SAB\) đều nên trọng tâm \(G\) là tâm đường tròn ngoại tiếp của tam giác \(SAB\)

Dựng \(Gy \bot \left( {SAB} \right)\), \(Gy//HI\), khi đó \(Gy\) là trục của đường tròn ngoại tiếp tam giác \(SAB\)

Khi đó \(Ix \cap Gy = O\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\) và \(R = SO = \sqrt {G{O^2} + G{S^2}} \)

Ta có: \(GO = \frac{a}{2},SG = \frac{{a\sqrt 3 }}{3} \Rightarrow R = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{3}} = \frac{{a\sqrt {21} }}{6}\)

Đáp án C

Copyright © 2021 HOCTAP247